
1Copyright 2006 by Pearson Education

Building Java ProgramsBuilding Java Programs

Chapter 8:
Classes and Objects

2Copyright 2006 by Pearson Education

Lecture outline

� advanced classes

� the toString method

� the keyword this

3Copyright 2006 by Pearson Education

The The toStringtoString methodmethod

reading: 8.6

4Copyright 2006 by Pearson Education

Printing objects
� By default, Java doesn't know how to print objects:

Point p = new Point(10, 7);
System.out.println("p is " + p); // p is Point@9e8c34

� We can print a better string (but this is cumbersome):

System.out.println("(" + p.x + ", " + p.y + ")");

� We'd like to be able to print the object itself:

// desired behavior
System.out.println("p is " + p); // p is (10, 7)

5Copyright 2006 by Pearson Education

The toString method
� The special method toString :

� Tells Java how to convert your object into a String as needed.

� Is called when an object is printed or concatenated to a String .

Point p1 = new Point(7, 2);

System.out.println("p1 is " + p1);

� If you prefer, you can write the .toString() explicitly.

System.out.println("p1 is " + p1.toString());

� Every class has a toString , even if it isn't in your code.

� The default toString returns the class's name followed by a

hexadecimal (base-16) number:

"Point@9e8c34"

6Copyright 2006 by Pearson Education

toString method syntax
� You can replace the default behavior by defining a

toString method in your class.

public String toString() {

<statement(s) that return an appropriate String> ;

}

� Example:

// Returns a String representing this Point.
public String toString() {

return "(" + x + ", " + y + ")";
}

7Copyright 2006 by Pearson Education

Client code question
� Recall our client program that produces this output:

p1 is (7, 2)
p1's distance from origin = 7.280109889280518

p2 is (4, 3)

p2's distance from origin = 5.0

p1 is (18, 8)
p2 is (5, 10)

distance from p1 to p2 = 13.0

� Modify the program to use our new toString method.

8Copyright 2006 by Pearson Education

Client code answer
// This client program uses the Point class.
public class PointMain {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(7, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1 is " + p1);
System.out.println("p2 is " + p2);

// compute/print each point's distance from the ori gin
System.out.println("p1's distance from origin = " + p1.distanceFromOrigin());

System.out.println("p2's distance from origin = " + p1.distanceFromOrigin());

// move p1 and p2 and print them again
p1.translate(11, 6);
p2.translate(1, 7);
System.out.println("p1 is " + p1);
System.out.println("p2 is " + p2);

// compute/print distance from p1 to p2
System.out.println("distance from p1 to p2 = " + p1. distance(p2));

}
}

9Copyright 2006 by Pearson Education

The keyword The keyword thisthis

reading: 8.7

10Copyright 2006 by Pearson Education

Using the keyword this
� this : A reference to the implicit parameter.

� implicit parameter: object on which a method/constructor is called

� this keyword, general syntax:

� To refer to a field:

this. <field name>

� To call a method:

this. <method name>(<parameters>);

� To call a constructor from another constructor:

this(<parameters>);

11Copyright 2006 by Pearson Education

Variable names and scope
� Usually it is illegal to have two variables in the same
scope with the same name.

� Recall: Point class's setLocation method:
� Params named newX and newY to be distinct from fields x and y

public class Point {
int x;
int y;
...
public void setLocation(int newX, int newY) {

if (newX < 0 || newY < 0) {
throw new IllegalArgumentException();

}
x = newX;
y = newY;

}
}

12Copyright 2006 by Pearson Education

Variable shadowing
� However, a class's method can have a parameter whose
name is the same as one of the class's fields.

� Example:

// this is legal
public void setLocation(int x , int y) {

...
}

� Fields x and y are shadowed by parameters with same names.

� Any setLocation code that refers to x or y will use the
parameter, not the field.

� shadowed variable: A field that is "covered up" by a
parameter or local variable with the same name.

13Copyright 2006 by Pearson Education

Avoiding shadowing with this
� The keyword this prevents shadowing:

public class Point {
private int x ;
private int y ;

...

public void setLocation(int x , int y) {
if (x < 0 || y < 0) {

throw new IllegalArgumentException();
}
this.x = x;
this.y = y;

}
}

Inside the setLocation method:

� When this.x is seen, the field x is used.

� When x is seen, the parameter x is used.

14Copyright 2006 by Pearson Education

Multiple constructors
� It is legal to have more than one constructor in a class.

� The constructors must accept different parameters.

public class Point {
private int x;
private int y;

public Point() {
x = 0;
y = 0;

}

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

...
}

15Copyright 2006 by Pearson Education

Multiple constructors w/ this
� One constructor can call another using this

� We can also rename the parameters and use this. field syntax.

public class Point {
private int x;
private int y;

public Point() {
this(0, 0); // calls the (x, y) constructor

}

public Point(int x , int y) {
this.x = x;
this.y = y;

}

...
}

